Behind and beyond a Theorem on Groups Related to Trivalent Graphs
نویسندگان
چکیده
In 2006 we completed the proof of a five-part conjecture which was made in 1977 about a family of groups related to trivalent graphs. This family covers all 2-generator, 2-relator groups where one relator specifies that a generator is an involution and the other relator has three syllables. Our proof relies upon detailed but general computations in the groups under question. The proof is theoretical, but based upon explicit proofs produced by machine for individual cases. Here we explain how we derived the general proofs from specific cases. The conjecture essentially addressed only the finite groups in the family. Here we extend the results to infinite groups, effectively determining when members of this family of finitely presented groups are simply isomorphic to a specific quotient.
منابع مشابه
On the Graphs Related to Green Relations of Finite Semigroups
In this paper we develop an analog of the notion of the con- jugacy graph of nite groups for the nite semigroups by considering the Green relations of a nite semigroup. More precisely, by de ning the new graphs $Gamma_{L}(S)$, $Gamma_{H}(S)$, $Gamma_{J}(S)$ and $Gamma_{D}(S)$ (we name them the Green graphs) related to the Green relations L R J H and D of a nite semigroup S , we first atte...
متن کاملSome applications of pq-groups in graph theory
We describe some new applications of nonabelian pq-groups to construction problems in Graph Theory. The constructions include the smallest known trivalent graph of girth 17, the smallest known regular graphs of girth five for several degrees, along with four edge colorings of complete graphs that improve lower bounds on classical Ramsey numbers.
متن کاملBayer and Eisenbud Contents
We study a family of stable curves defined combinatorially from a trivalent graph. Most of our results are related to the conjecture of Green which relates the Clifford index of a smooth curve, an important intrinsic invariant measuring the “specialness” of the geometry of the curve, to the “resolution Clifford index,” a projective invariant defined from the canonical embedding. Thus we study t...
متن کاملClassification of trivalent symmetric graphs of small order
CLASSIFICATION OF TRIVALENT SYMMETRIC GRAPHS OF SMALL ORDER Marston Conder and Margaret Morton Department of Mathematics University of Auckland Private Bag 92019 Auckland NEW ZEALAND A classification is given of all finite connected trivalent symmetric graphs on up to 240 vertices, based on an analysis of short relators in their automorphism groups. SUBJECT CLASSIFICATION 05C25(Primary) 20F05(S...
متن کاملOn trivial ends of Cayley graph of groups
In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007